INTRODUCTION

- Platelet production (PP) and platelet administration (PA) are complex processes, largely due to pathogen testing.
- Pathogen reduction (PR) is a new technology that has the potential to improve PP efficiency by simplifying these processes.¹
- PR has successfully been used in Europe for over 10 years.
- Changing FDA guidance may increase uptake of PR in the US (Table 1).²³
 - Recent Food and Drug Administration (FDA) guidance, prompted by Zika virus concerns, recommends either PR or additional Zika testing for platelets manufactured in the US.³

OBJECTIVES

- To develop a framework detailing the tasks involved in PP and PA from the hospital perspective.
- To use this framework to assess the potential impact of PR on PP and PA tasks.

METHODS

- Identification of tasks involved in producing and administering conventionally processed (CP) and PR platelets was informed through direct observation of these tasks at a hospital blood donor center as well as discussion with clinical experts and prior work.⁴
- Potential impacts of PR vs. CP on PP and PA tasks were identified.

RESULTS

- Major PP tasks include donor recruitment, apheresis donation, processing, and storage.
 - PP comprises 26 tasks for both CP and PR platelets.
 - Storage of CP platelets requires point-of-issue (POI) bacterial testing of platelets every 24 hours for units aged 4 days and older.
- Major PA tasks include physician ordering, administration to patient, and adverse event (AE) monitoring and management (both infectious and noninfectious AE).
 - PR comprises 13 tasks with conventional platelets vs. 12 tasks with PR platelets.
 - POI is task-intensive, requiring up to 6 additional steps per test repeated every 24 hours, ranging from 2-6 tests per unit depending on platelet age.
- Potential impacts of PR on PP and PA tasks from the hospital production perspective are presented in Fig. 1.
 - Noninfectious AE tasks are similar for both PA and PR platelets; however, infectious AE are expected to be reduced or eliminated with PR.
 - Large-scale epidemiological databases are needed to inform potential impacts of PR on AE rates.

LIMITATIONS

- This analysis takes the US perspective only and does not draw on European experience.
- Process framework was developed in a time of changing FDA guidance.
- Relative impact of PR is likely to depend on hospital characteristics (e.g., size, specialty).

CONCLUSIONS

- The PP framework can be used in hospital operations research to understand the PP and PA processes and potential impacts of changing FDA guidance.
- PR may simplify tasks involved in producing, storing, and ordering platelets.
- This framework can be used to inform an economic model comparing CP to PR.

REFERENCES

FUNDING DISCLOSURE

Unfunded preliminary research to inform subsequent work for Cerus Corp.

Figure 1. Potential Impacts of PR vs. CP on PP and PA Tasks

<table>
<thead>
<tr>
<th>Date of Release</th>
<th>Report Title</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2016</td>
<td>Bacterial Risk Control Strategies for Blood Collection Establishments and Transfusion Services to Enhance the Safety and Availability of Platelets for Transfusion; Draft Guidance for Industry²</td>
<td>- FDA has approved PR technology for use in lieu of bacterial culture and rapid bacterial testing of platelets in the US. - PR platelets have a shelf life of 5 days. - CP platelets have a shelf life of 5 days with the use of rapid bacterial testing (POI) performed every 24 hours starting on Day 4. - Shelf life of both PR and CP platelets can be extended to 7 days using specific 7-day storage containers and bacterial testing via either POI on Days 6 and 7 or culture on Days 4 or 5.</td>
</tr>
<tr>
<td>August 2016</td>
<td>Revised Recommendations for Reducing the Risk of Zika Virus Transmission by Blood and Blood Components; Guidance for Industry³</td>
<td>- As of February 2016, FDA recommended Zika testing only for those blood products donated in certain locations considered to be “active” for Zika virus transmission in the US. - FDA now recommends Zika testing for all donated blood products nationally. - PR may be used in lieu of Zika testing for platelets.</td>
</tr>
</tbody>
</table>

Table 1. Summary of Recent FDA Guidance on Platelet Processing

<table>
<thead>
<tr>
<th>Date of Release</th>
<th>Report Title</th>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2016</td>
<td>Bacterial Risk Control Strategies for Blood Collection Establishments and Transfusion Services to Enhance the Safety and Availability of Platelets for Transfusion; Draft Guidance for Industry²</td>
<td>- FDA has approved PR technology for use in lieu of bacterial culture and rapid bacterial testing of platelets in the US. - PR platelets have a shelf life of 5 days. - CP platelets have a shelf life of 5 days with the use of rapid bacterial testing (POI) performed every 24 hours starting on Day 4. - Shelf life of both PR and CP platelets can be extended to 7 days using specific 7-day storage containers and bacterial testing via either POI on Days 6 and 7 or culture on Days 4 or 5.</td>
</tr>
<tr>
<td>August 2016</td>
<td>Revised Recommendations for Reducing the Risk of Zika Virus Transmission by Blood and Blood Components; Guidance for Industry³</td>
<td>- As of February 2016, FDA recommended Zika testing only for those blood products donated in certain locations considered to be “active” for Zika virus transmission in the US. - FDA now recommends Zika testing for all donated blood products nationally. - PR may be used in lieu of Zika testing for platelets.</td>
</tr>
</tbody>
</table>